Differential time- and NADPH-dependent inhibition of CYP2C19 by enantiomers of fluoxetine.
نویسندگان
چکیده
Fluoxetine [+/--N-methyl-3-phenyl-3-[(alpha, alpha, (-trifluoro-p-tolyl)oxy]-propylamine)] a selective serotonin reuptake inhibitor, is widely used in treating depression and other serotonin-dependent disease conditions. Racemic, (R)- and (S)-fluoxetine are potent reversible inhibitors of CYP2D6, and the racemate has been shown to be a mechanism-based inhibitor of CYP3A4. Racemic fluoxetine also demonstrates time- and concentration-dependent inhibition of CYP2C19 catalytic activity in vitro. In this study, we compared fluoxetine, its (R)- and (S)-enantiomers, ticlopidine, and S-benzylnirvanol as potential time-dependent inhibitors of human liver microsomal CYP2C19. In a reversible inhibition protocol (30 min preincubation with liver microsomes without NADPH), we found (R)-, (S)- and racemic fluoxetine to be moderate inhibitors with IC(50) values of 21, 93, and 27 microM, respectively. However, when the preincubation was supplemented with NADPH, IC(50) values shifted to 4.0, 3.4, and 3.0 microM, respectively resulting in IC(50) shifts of 5.2-, 28-, and 9.3-fold. Ticlopidine showed a 1.8-fold shift in IC(50) value, and S-benzylnirvanol shifted right (0.41-fold shift). Follow-up K(I) and k(inact) determinations with fluoxetine confirmed time-dependent inhibition [K(I) values of 6.5, 47, and 14 microM; k(inact) values of 0.023, 0.085, 0.030 min(-1) for (R)-, (S)-, and racemate, respectively]. Although the (S)-isomer exhibits a much lower affinity for CYP2C19 inactivation relative to the (R)-enantiomer, it exhibits a more rapid rate of inactivation. Racemic norfluoxetine exhibited an 11-fold shift (18-1.5 microM) in IC(50) value, suggesting that conversion of fluoxetine to this metabolite represents a metabolic pathway leading to time-dependent inhibition. These data provide an improved understanding of the drug-interaction potential of fluoxetine.
منابع مشابه
Short Communication Differential Time- and NADPH-Dependent Inhibition of CYP2C19 by Enantiomers of Fluoxetine
Fluoxetine [ -N-methyl-3-phenyl-3-[( , , (-trifluoro-p-tolyl)oxy]propylamine)] a selective serotonin reuptake inhibitor, is widely used in treating depression and other serotonin-dependent disease conditions. Racemic, (R)and (S)-fluoxetine are potent reversible inhibitors of CYP2D6, and the racemate has been shown to be a mechanism-based inhibitor of CYP3A4. Racemic fluoxetine also demonstrates...
متن کاملFluoxetine and norfluoxetine mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19 and CYP3A4
Fluoxetine and its circulating metabolite norfluoxetine comprise a complex multiple-inhibitor system that causes reversible or time-dependent inhibition of the cytochrome P450 (CYP) family members CYP2D6, CYP3A4, and CYP2C19 in vitro. Although significant inhibition of all three enzymes in vivo was predicted, the areas under the concentration-time curve (AUCs) for midazolam and lovastatin were ...
متن کاملStereoselective inhibition of CYP2C19 and CYP3A4 by fluoxetine and its metabolite: implications for risk assessment of multiple time-dependent inhibitor systems.
Recent guidance on drug-drug interaction (DDI) testing recommends evaluation of circulating metabolites. However, there is little consensus on how to quantitatively predict and/or assess the risk of in vivo DDIs by multiple time-dependent inhibitors (TDIs) including metabolites from in vitro data. Fluoxetine was chosen as the model drug to evaluate the role of TDI metabolites in DDI prediction ...
متن کاملDmd052639 2056..2065
Recent guidance on drug-drug interaction (DDI) testing recommends evaluation of circulating metabolites. However, there is little consensus on how to quantitatively predict and/or assess the risk of in vivo DDIs by multiple time-dependent inhibitors (TDIs) including metabolites from in vitro data. Fluoxetine was chosen as the model drug to evaluate the role of TDI metabolites in DDI prediction ...
متن کاملEvaluation of time-dependent cytochrome P450 inhibition using cultured human hepatocytes.
Primary human hepatocytes in culture are commonly used to evaluate cytochrome P450 (P450) induction via an enzyme activity endpoint. However, other processes can confound data interpretation. To this end, the impact of time-dependent P450 inhibition in this system was evaluated. Using a substrate-cassette approach, P450 activities were determined after incubation with the prototypic inhibitors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 37 4 شماره
صفحات -
تاریخ انتشار 2009